Smart grids and energy research at the Oulu Business School

11.11.2013

Maria Kopsakangas-Savolainen Finnish Environment Institute, Thule Institute and Department of Economics, University of Oulu

Sustainable Energy Economics Research group

- Senior Researcher Maria Kopsakangas-Savolainen, Finnish Environment Institute (SYKE) and University of Oulu
- Professor Rauli Svento, Department of Economics, University of Oulu
- Professor Artti Juutinen, Finnish Forest Research Institute (METLA)
- Doctoral Student Juha Teirilä, University of Oulu
- Doctoral Student Hannu Huuki, University of Oulu
- Doctoral Student Enni Ruokamo, University of Oulu

1. Consumption preferences:

- a. Households' attitudes toward alternative heating systems and renewable energy
- b. Energy consumption preferences, distributed energy resources and smart management

2. Incentive mechanism in demand management

- *a. Real-Time Pricing and efficient production.*
- b. Demand management and Real-Time Emission.

3. Efficient and sustainable production

- a. Dynamic models for photovoltaics with storage.
- b. Strategic behavior of hydro power producers: Buffering the intermittent electricity generation?

4. Distributed energy generation, smart management and the role of ecosystem

- a. Modeling distributed energy system as two-sided markets.
- b. Policy analyzes and impact assessment of smart management of distributed energy and ecosystem experiments in HINKU municipalities

5. Dynamic distribution price and efficient regulation

Households' attitudes toward alternative heating systems and renewable energy

- Residential heating accounts for a large fraction of the overall residential energy demand (over 80 % in Finland)
- A hybrid heating system is an alternative to a traditional heating system (oil or direct electric heating), which uses a supplementary heating system alongside the main heating system
 - Hybrid home heating systems can utilize many sources of renewable energy to generate heat: solar, solid wood, wood pellet and ground heat as well as outside air and exhaust air
- Research questions:
 - What kind of heating system choices would the consumers make under new heating alternatives?
 - > What are the determinants of the adoption of hybrid home heating systems?
- We use choice experiment (CE) to analyze consumers' preferences for characteristic of hybrid home heating systems and renewable energy

Energy consumption preferences, distributed energy resources and smart management

- Choice experiment approach to investigate the determinants of the adaption of smart grid technologies by households in Finland.
- What energy saving tasks (turning off lights, delayed usage of dish washing machine etc.) consumers are willing to take under alternative energy pricing mechanisms.
- The empirical electricity market simulation model is extended so that the impact of smart technology, new consumer oriented pricing mechanisms (and contracts) and knowledge of consumer preferences is utilized.
- Data collected through a survey.

Optimal subsidies for photovoltaics with storage in Germany

- Generous feed-in tariff has caused large adoption of photovoltaics in Germany (35 GW). Germany targets to have 52 GW of installed photovoltaics by 2020.
- Intermittent nature of solar power generation causes large variations in electricity supply. This becomes expensive (via back-up power plants) if excess energy can not be stored.
- Modelling households' solar panel purchasing behaviour it can be studied: What are the optimal subsidies (amount, form, schedule) that encourage households to store self-generated energy (with battery banks) instead of selling it to the utility while still reaching the target adoption level?
- E.g. high feed-in tariff encourages purchasing solar panels but does not encourage storing the generated electricity.

Strategic behavior of hydropower producers: Buffering the intermittent electricity generation?

- Hydropower: unique production technology
 - Flexible adaptation of production level
 - Ability to 'store' energy in water reserves
 - → Thus, hydropower is able to provide beneficial 'balancing services' to the electricity system.
- As the share of intermittent electricity increases (e.g. wind-generated power), flexibility is required from other components.
- This paper models a thermal-hydro-windpower system, asking:
 - How does hydroproducer allocate the water reserve in different market environments?
 - As wind power enters, what is the reaction of hydroproducer and how does hydropower affect the market outcome: electricity prices, carbon dioxide emissions and investment incentives?
- Analyse on the level of flexibility this intermittent production requires from the rest of the supply side of the electricity system.

Modeling distributed energy system as two-sided markets

- Literature survey: learning from other fields of economy
 - ➤ traditional examples of two-sided markets are credit cards, video games and consoles and browsers but many other examples can be given (see Rochet and Tirole 2003 for a more detailed classification).
- A virtual model based for theoretical results for two-sided market is created.
- Need for new innovations (smart management, smart grid) and value of ecosystems is shown/regocnized.

Policy analyzes and impact assessment of smart management of distributed energy and ecosystem Policy analyse:

- Incentive base supply and demand side management.
 > RTP, RTE, etc.
- Simulation model
 - Data from Nord Pool (system level analysis) and HINKU municipalities (municipality/industry/household level analysis) is used.
 - Need for technical and non-technical innovations for well functioning ecosystem is shown

Experiments in HINKU municipalities

Dynamic distribution price and efficient regulation

- Distributed energy and smart technology creates new challenges for managing electricity distribution and transmission efficiently.
- Market based pricing \rightarrow Real-Time Pricing
- Event based pricing:
 - Demand-response payments
 - Critical peak prices
 - Direct load control
 - Rebate for reduction
- To optimize benefits of various pricing structures and new smart technology new type of regulation is needed

Publications

- Kopsakangas-Savolainen, M. and Svento, R. (2013) Economic value of Intermittent Power Generation, *Energy and Environment research*, Vo. 3 (2).
- Kopsakangas-Savolainen, M. and Svento, R. (2013) Promotion of market access for renewable energy in the Nordic Power markets, *Environmental and Resource Economics*, Vol.54 (4): 549-569.
- Kopsakangas-Savolainen, M. and Juutinen, A. (2013) Energy consumption and savings: A survey based study of Finnish households, *Journal of Environmental Economics&Policy* 2(1): 71-92.
- Kopsakangas-Savolainen, M. and Svento, R. (2012) Modern Energy Markets; Real-Time Pricing, Renewable Resources and Efficient Distribution, Springer UK, London. ISBN 978-1-4471-2971-4.
- Kopsakangas-Savolainen, M. and Svento, R. (2012) Real-Time Pricing in the Nordic Power Markets (with Rauli Svento), *Energy Economics*, Vol 34 (4): 1131-1142.
- Kopsakangas-Savolainen, M. and Svento, R. (2011) Observed and unobserved heterogeneity in stochastic frontier models, *Energy Economics*, Vol. (2): 304-310.
- Kopsakangas-Savolainen, M. and Svento, R. (2011) Hydropower Production Strategies: Impacts on Emissions and Windfall Profits, Available at *Agricultural*&*Natural Resource Economics eJournal*, Vol 3, (88). <u>http://ssrn.com/abstract=1838025</u>
- Kopsakangas-Savolainen, M. and Svento, R. (2010) Comparing welfare effects of different regulation schemes: an application to the electricity distribution industry, *Energy Policy*, Vol. 38:7370-7399.
- Kopsakangas-Savolainen, M. (2010) Consistency conditions for efficiency measures in Finnish electricity distribution industry; *Economics of Networks eJournal* Vol. 2, (156). Available at: http://srn.com/abstract=1717709.