Gas emission measurements with a FTIR gas analyzer - verification of the analysis method

Kari Pieniniemi¹* and Ulla Lassi¹,²

¹University of Oulu, Department of Chemistry, FI-90014 University of Oulu, P.O.Box 3000 ²Kokkola University Consortium Chydenius, P.O.Box 567, FI-67100 Kokkola

I Introduction

A Gasmet DX 4000N FTIR gas analyzer (Gasmet Technologies 2006) has been used to measure and analyze gaseous emissions from the chemical industry and various combustion processes (Heikkinen 2007). Recently, there has been an increase in interest in the measurement and analysis of product gas composition from the wood gasification process and the emissions of wood gas fired gas engines and burners. The aim of this paper is to develop the FTIR analysis method and to ascertain the accuracy and relevance of emission measurements within the chemical industry and various combustion processes.

2 Objectives of the investigation

A Gasmet FTIR gas analyzer (Figure 1a) is a powerful tool for analyzing complicated gas mixtures to enable qualitative and quantitative analysis of approximately 50 gaseous compounds simultaneously. It can be used as a laboratory instrument or as a continuous emission monitoring system. In addition, it has some significant benefits over a conventional gas analyzer; drying of the gas mixture is not required (as water is a measureable compound), interferences can be easily removed, and only the gas phase FTIR spectrum is added to the analysis. Furthermore, analysis can be repeated at any time after measurement has been taken. Calibration gas mixtures are not necessary, since only the single component calibration is required.

	C:\CalometLibrary071122\MethaneCH4_01200 ppm diluted.ref			ted.ref	C:\CalcmetLibrary071122\Wethan				
	001 Water vapor H2O	0.0000	VOI-N	0.0004	001 Watervapor H20	0.0000	501-16	0.0000	
	023 Toluene C7H8	628.2262	ppm	0.2139	023 Toluene C7H8	0.0000	ppm	0.0000	
	035 2-Methylnaphtalene C11H10	293.2688	ppm	0.2887	035 2-Methylnaphtalene C11H10	0.0000	ppm	0.0000	
	024 Styrene C8H8	258.3832	ppm	0.3203	024 Styrene CBH8	0.0000	ppm	0.0000	
	033 Naphtalene C10H8	204.6166	ppm	0.3588	033 Naphtalene C10H8	0.0000	ppm	0.0000	
	016 Hexane C6H 14	160.7295	ppm	0.2158	016 Hexare C6H14	0.0000	ppm	0.0000	
	037 Acetone C3H6O	138.3569	ppm	0.3832	037 Acetone C3H6O	0.0000	ppm	0.0000	
	013 Ethane C2H6	98.4614	pom	0.2088	013 Ethane C2H6	0.0000	ppm	0.0000	
	026 m-Xviene CBH10	69.0013	pom	0.2906	026 m-Xylene CBH10	0.0000	ppm	0.0000	
	014 Ethylene C2H4	30.7307		0.2825	D14 Ethylene C2H4	0.0000	ppm	0.0000	
THE CANADOC CONTRACTOR OF THE	020 Acetylene C2H2	18.9268		0.2316	020 Acetylene C2H2	0.0000	ppm	0.0000	
THE REAL PROPERTY AND A DESCRIPTION OF THE REAL PROPERTY	038 Methanol CH40	15.9483		0.3817	038 Methanol CH40	0.0000	ppm	0.0000	
	008 Sulfur disside SO2	15.5433		0.1854	008 Sulfur diaxide 502	0.0000	ppm	0.0000	
	009 Ammonia NH3	10.1705		0.0329	009 Ammonia NH3	0.0000	ppm	0.0000	
	006 Nitropen monoxide NO	0.4270		0.0001	006 Ntrogen monoxide NO	0.0000	ppm	0.0000	
	002 Carbon dioxide CO2	0.0164		0.0021	002 Carbon dioxide CO2	0.0000	101-76	0.0000	
	004 Carbon monoxide CO (High)	0.0133	VOL-16	0.0104	004 Carbon monoxide CO (High)	0.0000	501-36	0.0000	
	059 Methane CH4 High	1200.000	ppm	0.0000	059 Methane CH4_High		ppm	0.0000	
	Libertan Pouro	0.0000	opm	1.1177	· · · · · · · · · · · · · · · · · · ·			0.0000	
				0.7967				0.0000	
				0.5270				∩ 0000 ∩	

Figure 1 *a*) Gasmet DX4000N, portable sampling unit, and portable probe with heated lines; b) An example of analysis of pure 1200 ppm CH_4 reference spectrum (left) and the same analysis after interferences have been removed (right).

One of the most significant disadvantages of using a Gasmet FTIR analyzer is that the development of the analysis method can occasionally be time consuming, especially if the spectral interferences are to be removed. If the analyzer is used without any spectral correction, the analysis results can be rather misleading (as shown in Figure 1b).

3 Results and discussion

3.1 Verification of the Analysis Method

Gas analysis of a FTIR gas analyzer can be verified by using real gas mixtures (containing all gas compounds with known compositions and concentrations). This is not always possible, and therefore, FTIR spectra of pure gas compounds with known concentrations can be used to verify and estimate the accuracy of the analysis method.

According to Lambert Beer's law, FTIR spectrum of a gas mixture is a linear combination of its independent components (Figure 2).

$$A(\nu) = \sum_{i=1}^{n} a_i(\nu) \cdot c_i \cdot L \tag{1}$$

where

 $i = i^{th}$ gas component (CO, CO₂, H₂O, etc)

n = total number of gas components

 $c_i = concentration of the ith component (ppm)$

L = absorption path length (5m in Gasmet FTIR)

 $v = 1/\lambda =$ wave number (1/cm)

 $a_1(\mathbf{v})$ = absorption coefficient of the ith gas component (CO, CO₂, H₂O, etc)

A (v) = absorbance spectrum of the gas mixture containing n gas components (i = 1, 2, ..., n)

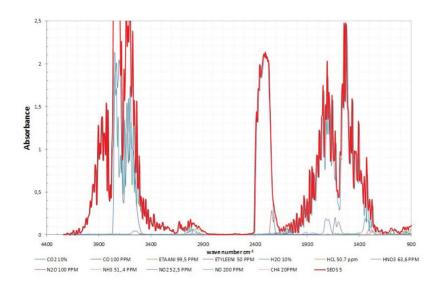


Figure 2 Linear combination (red) of the independent gas components of known concentration.

Absorption coefficient of an individual gas component $ai(\mathbf{v})$ is specific for a identified compound and can be used to calculate a new FTIR spectrum with different concentration using equation (3).

$$a_i(\nu) = \frac{A_i(\nu)}{c_i \cdot L} \tag{2}$$

where $A_i(\mathbf{v}) =$ known FTIR spectrum of compound I (reference spectra) $c_i =$ concentration associated with the known spectrum $A_i(\mathbf{v})$ (ppm)

$$A_k(\nu) = a_i(\nu) \cdot c_k \cdot L = A_i(\nu) \left(\frac{c_k}{c_i}\right)$$
⁽³⁾

where

 $A_k(\mathbf{v}) = FTIR$ spectrum of a gas component i associated with the new concentration c_k $a_i(\mathbf{v}) =$ absorption coefficient of the ith gas component (CO, CO₂, H₂O, etc) $c_k =$ new concentration of the ith gas component (CO, CO₂, H₂O, etc) FTIR spectrum of the gas mixture with known concentrations is a linear combination of the FTIR spectrum of the individual gas components

$$B(\nu) = \sum_{k=1}^{n} A_k(\nu) \tag{4}$$

where

B (v) = absorbance spectrum of the gas mixture containing n gas components (i = 1, 2,..., n) with known concentrations (Figure 2)

The analysis method for emissions of product gas combustion was evaluated by making a synthetic gas mixture by linear combination of known reference spectra (Figure 2). The resulting synthetic gas mixture was then analyzed using a CASMET analysis program. Results indicated that in most cases the calculated concentrations were within 3 % of the actual concentrations of the synthetic gas mixture (see Table 1).

Gas component	Unit	Calculated	Actual	Difference	Difference	
		conc.	conc.	conc.	%	
Water vapour H_2O	vol-%	10.8	10	0.777	8 %	
Carbon dioxide CO ₂	vol-%	10.0	10	0.020	0%	
Carbon monoxide CO	ppm	98.2	100	-1.828	2 %	
Nitrous oxide N_2O	ppm	97.4	100	-2.647	3 %	
Nitrogen monoxide NO	ppm	199.9	200	-0.113	0 %	
Ammonia NH ₃	ppm	50.6	51.4	-0.785	2 %	
Hydrogen chloride HCl	ppm	52.0	50.7	1.334	3 %	
Methane CH ₄	ppm	20.7	20	0.671	3 %	
Ethane C_2H_6	ppm	97.6	99.5	-1.898	2 %	
Ethylene C ₂ H ₄	ppm	49.3	50	-0.702	1%	

Table I Analysis results of known combustion gas mixtures.

3.2 Correction of the Measured Concentration and Calibration of the Wave number and Absorbance Scale of the FTIR Analyzer

Changes in the conditions during the measurements of reference and sample spectra can be taken into account by using a constant concentration calibration transfer spectra (CTS) measured at the sampling site and during the measurement of the reference spectra.

$$R_{LPS} = \left(\frac{L_R}{L_S}\right) \cdot \left(\frac{T_S}{T_R}\right) \cdot \left(\frac{P_R}{P_S}\right) = \frac{c_S}{c_R}$$

 $R_{\rm LPS}$ = scaling factor to correct path length and pressure variation between the measurement of the reference and sample spectra

 C_s = measured concentration of the CTS during sampling

 $C_{_{\rm R}}$ = measured concentration of the CTS during the measurement of the reference spectra

 L_{R} = reference spectra path length

 L_s = sample spectra path length

 T_s = absolute temperature of the sample gas (K)

 T_{R} = absolute temperature of the reference gas (K)

 $P_s = sample cell pressure$

 $P_{_{R}}$ = reference spectrum sample pressure

This comparison allows the detection of any instrument malfunctions and quantitatively account for spectral differences which are related to optical retardation, path length and temperature variations (Lay 1993). A measured concentration can be corrected by multiplying itself with a scaling factor (EPA Test Method 320).

$$c_{corr} = R_{LPS} \cdot c_{calc}$$

where

 c_{corr} = concentration corrected for path length

 c_{ralc} = measured concentration (output of the analytical program)

Calibration Transfer Spectra (CTS) can be produced for any suitable gaseous compound with an accurate

(5)

(6)

concentration, but in most cases 100 ppm ethylene is commonly used (Lay 1993). The concentration between the reference and measured CTS must be within ± 5 % of the mean value (EPA Test Method 320).

4 Relevance of the investigation

A Gasmet FTIR gas analyzer is a powerful tool for quantitative analysis of complicated gas mixtures. Despite its many advantages, the development of an analysis method can be time consuming and the results can sometimes be misleading. To overcome these drawbacks, the instrument has to be calibrated and the analysis method has to be verified using known gas mixtures or pure gas components with known concentrations. Unfortunately making real gas mixtures of known compositions is not always possible and instead synthetic gas mixtures can be used. This increases the accuracy and relevance of the method used in the emission measurements.

References

- EPA Test Method 320 (1999). Measurement of vapor phase organic and inorganic emissions by extractive Fourier Transform Infrared (FTIR) spectroscopy, U.S. Code of Federal Regulations (40 CFR 61, Appendix B), Available at: http://www.epa.gov/ttn/emc/promgate.html.
- Gasmet Technologies (2006) Gasmet DX-Series Instruction and Operating manual. Available at: http://www.gasmet.fi/.
- Heikkinen M, Pieniniemi K, Lassi U, Pitkäaho S, Ojala S, Keiski R (2007) **Chemical Engineering Transactions** I I, pp. 593-598.
- Lay LT (1993) Fourier Transform Infrared (FTIR) Method Validation at the Coal Fired Boiler.

Reference to this article:

Pieniniemi K. and Lassi U. (2010) Gas emission measurements with a FTIR gas analyzer - verification of the analysis method.

In: Pongrácz E., Hyvärinen M., Pitkäaho S. and Keiski R. L. (eds.) Clean air research at the University of Oulu. Proceeding of the SkyPro conference, June 3rd, 2010, University of Oulu, Finland.

Kalevaprint, Oulu, ISBN 978-951-42-6199-2. pp.117-121.

SkyPro conference: <u>http://nortech.oulu.fi/SkyPro/index.html</u> Proceedings: <u>http://nortech.oulu.fi/SkyPro/skyproproc.html</u>