

Renewable energy at water utilities

WARES Conference June 4th, 2014, Oulu, Finland

Eva Pongrácz

University of Oulu, NorTech Oulu

Periphery Programme

Northern

European Regional Development Fund

UCGAS water asset renewable energy solutions

- WARES is a 2-year strategic Northern Periphery Programme project which explores the opportunities to generate renewable energy at water utility assets
- The focus is on sites with previously unused, hidden potential.
- The outcomes of the project will be used to propose a scheme of policy refinements for each region.

n Surope a Northern Periodesty for a soutainable and prosperous Riture

European Union European Regional Development Fund

JJGGS Partnership

Narvik Science Park

Norut, Narvik

University of Oulu

International Recycling and Resources Institute

Action Renewables

Mayo County Council

Clár ICH

LGGS Activities

WARES pilot sites explore opportunities for

- micro-hydro, in-pipe hydro
- small and medium-scale wind energy
- solar power
- energy from biosolids
- waste heat from wastewater

Provide practical solutions to utilize these assets

- Technical and economic assessment, financial plans
- Assess also the social impact of renewable energy investments

The water - energy nexus

- Two of the most fundamental resources driving civilization
- Intrinsically interlinked
 - Energy is consumed at every stage of the water supply chain
 - Water is a key resource in energy generation
- Both resources are limiting the other
- Both are running short
 - Justification to view them together

How much water is required to generate 1MWh of electricity

Gas/steam combined cycle 28,000 – 75,000 litres

Coal and oil 80,000 – 190,000 litres

Nuclear *95,000 – 220,000 litres*

How much energy is required to deliver 1 million litres of clean water?

Lake or river ~370 kWh

Wastewater 620–870 kWh

Case Oulu, 2012:

10,534,371 m³ drinking water 6,320,623 kWh electricity

= 1 ML drinking water "costs" 600 kWh

17,504,819 m³ wastewater treated 5,731,943 kWh electricity

= 1 ML wastewater treatment ~300 kWh

Seawater 2 580 – 4 360 kWh

Energy intensity of water services - drinking water

Pumping!


- The largest energy consumer at drinking water side
- Can cover up to 70 80 % of overall electricity use
- Especially pumping groundwater
 - Elevate from lower source up to the treatment plant
 - In some places (e.g. San Diego) it was found that producing water even from wastewater was more energy efficient!
 - On the other hand, groundwater often require less purification...

Energy intensity of water services - wastewater

Sludge treatment

- Aeration processes
 - 50% electricity of ww-treatment plants!
- Primary clarifiers
- Dewatering solids
- Pumping
- Advanced treatment processes
 - UV processes
 - Membrane technologies
- Space heating costs
 - Can be considerable in cold climates!

Water = Energy down the drain?

- Water conservation lowers energy use considerably
- End-use of water consumes more energy that any other part of the urban water conveyance and treatment cycle
 - Especially energy intensive uses like washing clothes and taking showers...

Need to co-manage energy and water resources

- There is an inherent connection between energy and water use
- Despite this inherent connection, it's actually uncommon to see energy and water utilities collaborating to identify best practices to save energy and water
- If energy and water utilities worked together, their could uncover joint cost-saving solutions
- Would save more money and utilities could share data to better understand their holistic energy-water footprint
- Water scarcity is largely absent from the debate over which energy sources are going to be the most reliable in our energy future

Water footprint meets carbon footprint

00

Carbon Footprint addresses the EU Climate Objectives

The Water Footprint is informative for EU water policies

A new way of providing environmental services?

- Since the mid nineteenth century urban sanitation in industrialized countries has been characterized by centralized sewers
- This system has become such an established standard that both the reasoning behind its development and its suitability and sustainability in the twenty-first century has long gone unquestioned
- Infrastructures for energy and water supply, as well as waste and wastewater management in contemporary cities are based on complex centralized supply, collection and disposal systems
- Among the well-known advantages, they have system immanent disadvantages, which are barriers for effective integrated resource management.

From centralized to decentralized – Parallel linear flows to synergies

- New and innovative urban infrastructures, which are based on the integrated management of resources, such as water, waste and energy
- Can contribute significantly to the reduction of resource consumption and related emissions as well as to the sustainable development of cities
- Such structures are based on decentralized systems that, in contrast to centralized systems based on linear resource flows, allows for synergies between different systems

Toward an integrated resources management

- The biggest challenge is the introduction of adapted operation and management structures for these new structures
- There are also significant differences in legal and institutional framework of specific regions and nations
- Ultimately, these decisions will have to be made in concert with issues regarding land-use, preservation of biodiversity, etc...

Step toward a closed loop recycling and zeroemission society!